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BIS(PHTHALOCYANINATO) LANTHANIDE SANDWICH
COMPOUNDS EXHIBITING MIXED VALENCE LIGANDS

Kathleen L. Trojan, William E. Hatfield, Keith D. Kepler and
Martin L. Kirk
Department of Chemistry
The University of North Carolina
Chapel Hill, N.C. 27599-3290 USA

ABSTRACT. Bis(phthalocyaninato) lanthanide sandwich compounds have
been synthesized for ytterbium and thulium. Low temperature magnetic
susceptibility data suggest a strong antiferromagnetic interaction between
the lanthanide f-electrons and the phthalocyaninato ligand radical electron.

Introduction

Lanthanide sandwich compounds with the formula Ln(Pc) 2 have been
known for over twenty-five years [1]. To a first approximation, the
lanthanide ion has a formal oxidation state of +3, with one of the
phthalocyanine ligands having a charge of -2, while the second
phthalocyanine ligand is a singly oxidized radical with a charge of -1. The
crystal structure of [Lu(Pc) 2]'CH 2C12 has been determined by Weiss et. al. [2]
Other lanthanide sandwich compounds have essentially the same structure
[3] in which the two phthalocyaninato rings are rotated an average of 450
with respect to one another, and it is assumed that the compounds
described here have the same structure. Powdered samples of the
compounds used in this study were verified by their ultraviolet, visible and
near-infrared spectra and by elemental analysis. This paper will focus on
the ytterbium and thulium bisphthalocyaninato sandwich compounds.

Experimental

Ultra-violet and visible spectra from 300 to 800 nm were collected on a
Hewlett Packard Diode Array spectrophotometer at room temperature in
CH 2C12 solution. The near-infrared data from 750 to 1650 nm were collected



on a Cary-17 spectrophotometer at room temperature in CH 2C 2 solution.
Magnetic susceptibility data of powdered samples were collected by using a
Princeton Applied Research Model 155 vibrating sample magnetometer
(VSM) equipped with a Janis Research Co. liquid helium cryostat. The
magnetometer was calibrated using HgCo(NCS) 4 [4]. Data were collected in
the temperature range 4.2-120 K with a magnetic field of I kOe for Tm and 8
kOe for Yb. The data were corrected to compensate for the diamagnetism of
the constituent atoms [5].

Results and Discussion

The ultraviolet, visible spectra of Yb(Pc) 2 and Tm(Pc) 2 show a Soret

band at 320 nm and a Q band at 660 nm (figure 1) typical of phthalocyanine
in its dianionic state [6]. The visible and near infrared spectra (figure 2)
show a band at 458 nm (Yb) or 460 nm (Tm) and at 917 nm (Yb) or 915 nm
(Tm), which correspond to the 2e (70 -4 alu(r) and le (7) -* lalu(O),

respectively. These transitions are typical for phthalocyanine in its
monoanionic state, due to the "missing" electron in the alu orbital [7]. The
near infrared spectra also show a transition (figure 2) at 1386 nm (Yb) or at
1390 nm (Tm) which has been assigned to an intervalence charge transfer
band [8], where the dianionic phthalocyanine acts as the donor and the
monoanion acts as the acceptor.

Low temperature magnetic susceptibility data for these compounds
reflect a strong antiferromagnetic interaction between the lanthanide
f-electrons and the phthalocyaninato ligand radical electron. This
antiferromagnetic coupling leads to a reduction of both the free ion spin
multiplicity and the J-value of the free ion term. Normally, J is a good
quantum number for most of the lanthanide ions [9] (except Eu and Sm),
and large spin-orbit coupling causes J to J' separations which are much
larger than the crystal field. In such cases, only the ground state is
populated and the Land6 g factor is given by:

g = 1 + [{S(S+1) - L(L+I) + J(J+1))/{2J(J+l)}].
However, due to the coupling of the lanthanide f-electrons with the radical
electron, two new states arise from the spin-orbit ground state (figure 3).

In the case of Tm(Pc) 2 the free ion ground state term svmbol is 3H6

and from the equation

jJeff = g [ J(J+1)]l/ 2,
a limiting moment of 7.6 B.M. is expected. The experimental magnetic

susceptibility data for Tm(Pc) 2 (figure 4) taken from 4.2 to 120 K appears to
follow the Curie-Weiss law up to approximately 65 K where the moment
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Figure 1: Ultraviolet and visible spectrum from 300 to 800 nm for Tm(PC)2

and Yb(PC) 2 in CH2CI2.
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Figure 2: Near-infrared spectra for Tm(PC) 2 (top) and Yb(PC) 2 (bottom) from

750 to 1650 nm in CH2C 2.
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begins to level off at -6.6 B.M. Above 65 K the susceptibility data appears to
deviate from this behavior. The coupled terms which arise from the 3H 6

free ion ground term are a 2H 11/ 2 antiferromagnetically coupled term and a
4H 13 / 2 ferromagnetically coupled term. Initially assuming that only the
2H 11 /2 state is populated, a Land6 g-factor of 1.09 and a limiting moment of
6.5 B.M. is expected. An attempt to fit the data to the Curie-Weiss Law
appears to model the data only up to -65 K and gave a g value of 1.17 which
gives only fair agreement with the theoretical value.

In the case of Yb(Pc) 2 the free ion ground state term symbol is 2F7/2

and a limiting moment of 4.5 B.M. is expected. The experimental magnetic
susceptibility data (figure 4) shows a leveling off of the moment of -3.6 B.M.
from - 30 to 55 K which again begins to show deviations from the
Curie-Weiss law above 55 K. The coupled terms which arise from the 2F7/2

free ion ground term ( as shown in figure 3) are a 1 F3 antiferromagnetically

coupled term and a 3 F 4 ferromagnetically coupled term. Initially assuming

that only the 'F3 state is populated, a Land6 g-factor of 1.00 is expected with a
limiting moment of 3.5 B.M. An attempt to fit the data to the Curie-Weiss
Law appears to model the data only up to -55 K and gave a g value of 1.09
which also gives only fair agreement with the theoretical value.

It is apparent that this deviation from the Curie-Weis, Law is due to
the presence of the low-lying higher spin multiplicity component arising
from the ex-hange coupling. From the Van Vleck equation

N I-2 ) e x p -E L)
kTn- -2E, kTn Ik T

nBnexp E

n ( _

when the energy of the antiferromagnetically coupled ground state E 0(0) is

arbitrarily set equal to zero, the energy of the ferromagnetically coupled
excited state E1 (0 ) is defined as AE, the first order zeeman energies are defines

as En(1) = mj gi 03 and second order (and higher) effects are neglected, a simple
expression can be derived to express the behavior of the magnetic
susceptibility in these systems which is of the form:
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Figure 3: Schematic energy level diagram for the lanthanide,
phthalocyaninato- radical coupled complex with ytterbium as the example.
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Figure 4: Magnetic susceptibility data for the bis(phthalocyaninato)-

lanthanide(III) sandwich compounds. Experimental points are shown as
+'s and best fit lines for the Curie-Weiss and VanVieck epressions are
drawn (see text).
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L t2J+1)+ 2J1+1)xFQA j

When this equation, including the presence of both states, is fit to the data,
excellent agreement is obtained for both the ground and excited states. For
Tm(Pc) 2, g( 2 H11 2 )calc = 1.09, g( 2H1 / 2 )exp = 1.10 and g(4H13/2 )calc = 1.23,
g( 4H1 3 / 2 )exp = 1.21 with a 106 cm "1 energy separation between states.

Similarly, for Yb(Pc) 2, g( IF 3 )calc = 1.00, g( 'F 3 )exp = 0.95 and g( 3F4 )calc = 1.25,
g( 3F4)ep = 1.25 with a 125 cm "1 energy separation between states.

In the figure of geff Vs. temperature (figure 4), the data points are

shown as +'s. The solid lines drawn through the data points were
generated by the Van Vleck equation with the parameters given above.
The best fit Curie-Weiss lines are shown for comparison.

X-band EPR measurements from 0 to 8000 Oe at ambient and lower
temperatures show no transitions at or near g=2, which would have been
indicative of a free radical. The absence of a signal is due to the strong
coupling between the phthalocyaninato ligand radical electron and the
f-electron. At room temperature, both Yb(Pc) 2 and Tm(Pc) 2 are EPR silent.

At 12.7 K, Yb(Pc) 2 shows two transitions at g, = 4.34 and g2 
= 9.42, while

Tm(Pc) 2 at 7.2 K exhibits a very complicated spectrum with several
transitions. The EPR spectrum of Lu(Pc) 2, which contains no unpaired
f-electrons, exhibits the free radical transition at g = 2.00 at both 7.2 and 298
K.

It is apparent from the EPR spectra, reduction of the moment from the
free ion value and excellent agreement of the experimental data with the
Van Vleck model derived for these systems that a strong coupling exists
between the phthalocyaninato ligand radical electron and the f-electrons for
Tm(Pc) 2 and Yb(Pc)2 . It should be noted that Yb(Pc) 2 with a 1F3 ground tcrm'

and a magnetic moment of 3.6 B.M. is the first example of a complex
compound in which magnetism is solely attributed to orbital angular
momentum.
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